首页> 外文OA文献 >Deep Neural Networks for No-Reference and Full-Reference Image Quality Assessment
【2h】

Deep Neural Networks for No-Reference and Full-Reference Image Quality Assessment

机译:无参考和全参考图像质量的深度神经网络   评定

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We present a deep neural network-based approach to image quality assessment(IQA). The network is trained end-to-end and comprises ten convolutional layersand five pooling layers for feature extraction, and two fully connected layersfor regression, which makes it significantly deeper than related IQA models.Unique features of the proposed architecture are that: 1) with slightadaptations it can be used in a no-reference (NR) as well as in afull-reference (FR) IQA setting and 2) it allows for joint learning of localquality and local weights, i.e., relative importance of local quality to theglobal quality estimate, in an unified framework. Our approach is purelydata-driven and does not rely on hand-crafted features or other types of priordomain knowledge about the human visual system or image statistics. We evaluatethe proposed approach on the LIVE, CISQ, and TID2013 databases as well as theLIVE In the wild image quality challenge database and show superior performanceto state-of-the-art NR and FR IQA methods. Finally, cross-database evaluationshows a high ability to generalize between different databases, indicating ahigh robustness of the learned features.
机译:我们提出了一种基于深度神经网络的图像质量评估(IQA)方法。该网络经过端到端训练,包括十个卷积层和五个用于特征提取的池化层,以及两个用于回归的完全连接层,这使它比相关的IQA模型要深得多。稍加调整即可在无参考(NR)和全参考(FR)IQA设置中使用; 2)允许联合学习局部质量和局部权重,即局部质量对全球质量估计的相对重要性,在一个统一的框架中。我们的方法是完全由数据驱动的,并且不依赖手工制作的功能或其他类型的有关人类视觉系统或图像统计信息的先验知识。我们在LIVE,CISQ和TID2013数据库以及LIVE在野外图像质量挑战数据库中评估了所提出的方法,并显示了优于最新NR和FR IQA方法的性能。最后,跨数据库评估显示了在不同数据库之间进行归纳的强大能力,表明学习的功能具有很高的鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号